
Python: module regrid.crossSection

regrid.crossSection index

Modules
MA
Numeric

regrid._regrid
copy

string

Classes

CrossSectionRegridder

class CrossSectionRegridder
#−−−

PURPOSE: To perform all the tasks required to regrid the input data into the ouput data in the
latitude−level plane for all times
#
PROCEDURE: Step One:
Make an instance of class CrossSectionRegridder passing it input and output grid information
Step Two:
Pass the input data with some descriptive parameters and get the output data
in return

#−−

Methods defined here:

__call__(self, ar, missing=None, order=None, method='log')
Call the regridder function.
ar is the input array.
missing is the missing data value, if any. It defaults to the missing/fill value
 defined for the input array, if any.
order is of the form "tzyx", "tyx", etc.
method is either 'log' to interpolate in the log of pressure, or 'linear' for linear interpolation.

__init__(self, latIn, latOut, levIn, levOut, latTypeIn=None, latSizeIn=None, latTypeOut=None, latSizeOut=None)
#−−−

PURPOSE: To make an instance which entails setting up the input and output grids

1/6

DEFINITION:
#
def __init__(self, latIn, latOut, levIn, levOut, latTypeIn = None, latSizeIn = None,
latTypeOut = None, latSizeOut = None):

PROCEDURE:

The user must assemble at least the following four pieces of information:
#
latIn − the axis specifying the latitude grid for the input data
#
latOut − the axis specifying the latitude grid for the output data
#
levIn − the axis specifying the pressure grid for the input data
#
levOut − the axis specifying the pressure grid for the output data
#
#
Additional information is required if a latitude grid is not global. It may be generic.
Otherwise it is a subset of one of the standard global grids. Correspondingly, the choice
for the grid type must be 'gaussian', 'equalarea', 'uniform' or 'generic'. In addition, the
computation requires the size of the global grid from which the subset was choosen. Consequently,
the user must assemble:
#
latTypeIn −− for input latitude, one of the following:
'gaussian'
'equalarea'
'uniform'
'generic'
#
latSizeIn −− for input latitude, the size of the goblal grid used in selecting the region
#
latTypeOut −− for output latitude, one of the following:
'gaussian'
'equalarea'
'uniform'
'generic'
#
latSizeOut −− for output latitude, the size of the goblal grid used in selecting the region

USAGE:

To make an instance preparing for a global to global regrid, type

r = CrossSectionRegridder(latIn, latOut, levIn, levOut)

To make an instance preparing for a global to a regional grid which, for example, is a subset of
a global gaussian grid of size 64, type

r = CrossSectionRegridder(latIn, latOut, levIn, levOut, latTypeOut = 'gaussian', latSizeOut = 64)
#
where the latOut axis must have been selected from the global 64 length gaussian grid

2/6

#−−

rgrd(self, dataIn, missingValueIn, missingMatch, logYes='yes', positionIn=None, maskIn=None, missingValueOut=None)
#−−−
#
PURPOSE: To perform all the tasks required to regrid the input data, dataIn, into the ouput data, dataout in
the latitude−level plane.
#
DEFINITION:
#
def rgrd(self, dataIn, missingValueIn, missingMatch, positionIn = None, maskIn = None,
missingValueOut = None):

PASSED : dataIn −− data to regrid
#
missingValueIn −− the missing data value to use in setting missing in the mask. It is required
and there are two choices:
None −− there is no missing data
A number −− the value to use in the search for possible missing data.
The presence of missing data at a grid point leads to recording 0.0 in the mask.
#
missingMatch −− the comparison scheme used in searching for missing data in dataIn using the value passed
in as missingValueIn. The choices are:
None −− used if None is the entry for missingValueIn
exact −− used if missingValue is the exact value from the file
greater −− the missing data value is equal to or greater than missingValueIn
less −− the missing data value is equal to or less than missingValueIn
#
logYes −− choose the level regrid as linear in log of level or linear in level. Set to
'yes' for log. Anything else is linear in level.

#
positionIn −− a tuple with the numerical position of the dimensions
in C or Python order specified in the sequence latitude,
level and time. Latitude and level are required. If time is missing submit None in its
slot in the tuple. Notice that the length of the tuple is
always three.
#
Explicitly, in terms of the shape of dataIn as returned by python's shape function
#
positionIn[0] contains the position of latitude in dataIn
positionIn[1] contains the position of level in dataIn or None
positionIn[2] contains the position of time in dataIn or None
#
As examples:
If the c order shape of 3D data is
(number of times, number of levels, number of latitudes)
submit
(2, 1, 0).
#
If the c order shape of 2D data is

3/6

(number of times, number of latitudes)
submit
(1, None, 0).
#
Send in None if the shape is a subset of (time, level, latitude) which is evaluated
as follows:
2D −− code assumes (1,0,None)
3D −− code assumes (2,1,0)
#
maskIn −− an array of 1.0 and 0.0 values where the 0.0 value is used to mask the input data. This
mask only works on the latitude grid. It is not possible to mask out a region in the level
plane. The 0.0 value removes the data from correponding grid point. The user can supply the
following choices:
#
None −− an array of 1.0s is created followed by substituting 0.0s for grid points with missing
data in the input data array, dataIn
#
array −− an array of 1.0s or 0.0s which must be either 2D or the actual size of the input data,
dataIn. This user supplied mask might be used to mask a latitude region. It is not
required to account for missing data in the input data. The code uses missingValueIn
and missingMatch to supply the 0.0s for grid points with missing data in the input
data array, dataIn.
#
#
missingValueOut −− the value for the missing data used in writing the output data. If left at the
default entry, None, the code uses missingValueIn if present or as a last resort
1.0e20
#

RETURNED : dataOut −− the regridded data
#

USAGE:

Example 1. To regrid dataIn into dataOut using all the defaults where None, None signifies no
missing data.
dataOut = x.rgrd(dataIn, None, None)
#
Example 2. To regrid dataIn into dataOut using 1.0e20 and greater as the missing data

dataOut = x.rgrd(dataIn, 1.e20, 'greater')

WARNING: This code does not regrid cross sections which have a single dummy longitude value!

#
#−−−

Functions

checkdimension(x, name)

4/6

#−−−
#
purpose: dimension checks
1. has a len method
2. data type is float32
3. monotonically increasing vectors

passed : x − coordinate vector
name − coordinate vector ID

returned: x, xsize −− dimension vector and its size
#
#−−−

get_latitude_wts_bnds(checklatpass)
#−−−

routine: get_latitude_wts_bnds

purpose: compare the passed checklatpass with the correct geophysical
ones calculated here. After finding a match call the function
to get the bounds.
#
usage: wts,bnds = get_latitude_wts_bnds(checklatpass)
where checklatpass is the grid to check
#
return: wts, bnds − tuple with weights and bounds
#
#−−−

get_region_latitude_wts_bnds(latRegionpass, latType, latSize)
#−−−

routine: get_region_latitude_wts_bnds

purpose: compare the passed latitudes, latRegion, with the global
ones calculated here and extract the wts and bounds for
the region
#
usage: wts,bnds = get_region_latitude_wts_bnds(latRegion, latType, latSize)
where latRegion is the regional grid to check
#
return: wts, bnds − tuple with weights and bounds
#
#−−−

latitude_bounds(lat_bnds)
#−−−

purpose: set up the shape and bounds for use by maparea
#
usage:

5/6

#
returned: tuple (bn,bs)
#
#−−

rmserror(data1, data2)
#−−−
#
purpose: compute the rms error for two data sets having the same shape

passed : the two data sets

returned: rms error
#
#−−−

section(latvals, levvals)
#−−−
#
purpose: make the crossi section analytical test case

passed : the grid coordinate vectors

returned: xsection −− a temerature like cross section
#
#−−−

sectionmask(dataIn, positionIn, maskIn, missingValueIn, missingMatch)
#−−−

purpose: construct the mask for the input data for use by rgdlength
#
usage: amskin = mask(dataIn, positionIn, maskIn, missingValueIn, missingValueOut, flag2D)
#
returned: amskin
#
#−−

sendmsg(msg, value1=None, value2=None)
#−−−
#
purpose: send the same message to the screen

passed : msg − the string
value − the number associated with the string

returned: return
#
#−−−

6/6

	PCMDI Software Portal - Python: module regrid.crossSection

